436 research outputs found

    More dynamic than expected : an updated survey of surging glaciers in the Pamir

    Get PDF
    This research has been supported by ESA (grant nos. 4000109873/14/I-NB and 4000127593/19/I-NB) and the Chinese Academy of Sciences (grant no. XDA20100300).The investigation of surging glaciers using remote sensing has recently seen a strong increase as freely available satellite data and digital elevation models (DEMs) can provide detailed information about surges that often take place in remote and inaccessible regions. Apart from analysing individual surges, satellite information is increasingly used to collect valuable data on surging glaciers. Related inventories have recently been published for several regions in High Mountain Asia including the Karakoram or parts of the Pamir and western Kunlun Shan, but information for the entire Pamir is solely available from a historic database listing about 80 glaciers with confirmed surges. Here we present an updated inventory of confirmed glacier surges for the Pamir that considers results from earlier studies and is largely based on a systematic analysis of Landsat image time series (1988 to 2018), very high-resolution imagery (Corona, Hexagon, Bing Maps, Google Earth) and DEM differences. Actively surging glaciers (e.g. with advancing termini) were identified from animations and flicker images and the typical elevation change patterns (lowering in an upper reservoir zone and thickening further down in a receiving zone). In total, we identified 206 spatially distinct surges within 186 glacier bodies mostly clustered in the northern and western part of the Pamir. Where possible, minimum and maximum glacier extents were digitised, but often interacting tributaries made a clear separation challenging. Most surging glaciers (n=70) are found in the larger size classes (>10 km2), but two of them are very small (<0.5 km2). We also found several surges where the length of the glacier increased by more than 100 %. The created datasets are available at: https://doi.org/10.1594/PANGAEA.914150 (Goerlich et al., 2020).Publisher PDFPeer reviewe

    Arctic tundra shrubification can obscure increasing levels of soil erosion in NDVI assessments of land cover derived from satellite imagery

    Get PDF
    This research was supported by the St Andrews World Leading Scholarship.Monitoring soil erosion in the Arctic tundra is complicated by the highly fragmentated nature of the landscape and the limited spatial resolution of even high-resolution satellite data. The expansion of shrubs across the Arctic has led to substantial changes in vegetation composition that alter the spectral reflectance and directly affect vegetation indices such as the normalized difference vegetation index (NDVI), which is widely applied for environmental monitoring. This change can mask soil erosion if datasets with too coarse spatial resolutions are used, as increases in NDVI driven by shrub expansion can obscure concurrent increases in barren land cover. Here we created land cover maps from a multispectral uncrewed aerial vehicle (UAV) and land cover survey and assessed satellite imagery from PlanetScope, Sentinel-2 and Landsat-8 for several areas in north-eastern Iceland. Additionally, we used a novel application of the Shannon evenness index (SHEI) to evaluate levels of pixel mixing. Our results show that shrub expansion can lead to spectral confusion, which can obscure soil erosion processes and emphasize the importance of considering spatial resolution when monitoring highly fragmented landscapes. We demonstrate that remote sensing data with a resolution < 3 m greatly improves the amount of information captured in an Icelandic tundra environment. The spatial resolution of Landsat data (30 m) is inadequate for environmental monitoring in our study area. We found that the best platform for monitoring tundra land cover is Sentinel-2 when used in combination with multispectral UAV acquisitions for validation. Our study has the potential to improve environmental monitoring capabilities by introducing the use of SHEI to assess pixel mixing and determine optimal spatial resolutions. This approach combined with comparing remote sensing imagery of different spatial and time scales significantly advances our comprehension of land cover changes, including greening and soil degradation, in the Arctic tundra.Publisher PDFPeer reviewe

    A radiological assessment of nuclear power and propulsion operations near Space Station Freedom

    Get PDF
    Scenarios were identified which involve the use of nuclear power systems in the vicinity of Space Station Freedom (SSF) and their radiological impact on the SSF crew was quantified. Several of the developed scenarios relate to the use of SSF as an evolutionary transportation node for lunar and Mars missions. In particular, radiation doses delivered to SSF crew were calculated for both the launch and subsequent return of a Nuclear Electric Propulsion (NEP) cargo vehicle and a Nuclear Thermal Rocket (NTR) personnel vehicle to low earth orbit. The use of nuclear power on co-orbiting platforms and the storage and handling issues associated with radioisotope power systems were also explored as they relate to SSF. A central philosophy in these analyses was the utilization of a radiation dose budget, defined as the difference between recommended dose limits from all radiation sources and estimated doses received by crew members from natural space radiations. Consequently, for each scenario examined, the dose budget concept was used to identify and quantify constraints on operational parameters such as launch separation distances, returned vehicle parking distances, and reactor shutdown times prior to vehicle approach. The results indicate that realistic scenarios do not exist which would preclude the use of nuclear power sources in the vicinity of SSF. The radiation dose to the SSF crew can be maintained at safe levels solely by implementing proper and reasonable operating procedures

    Изменение площади и массы ледников в долине Ала-Арча в Киргизском хребте на Северном Тянь-Шане с 1964 г.

    Get PDF
    Glaciers are an important source of fresh water for Central Asia as they release water during the summer months when precipitation is low and water demand highest. Many studies address glacier area changes but only changes in glacier mass can be directly linked to climate and runoff. Despite the importance, investigations of glacier mass changes have been restricted to only a few glaciers in the Tien Shan until now. Geodetic mass balance measurements are suitable to complement and extend existing in-situ measurements. In this study, both area and mass changes of the ~40 km² glacier ice in the Ala Archa Valley, Kyrgyz Tien Shan, were investigated using 1964 and 1971 stereo Corona, 2012 stereo ASTER, the SRTM digital terrain model and other optical data such as Landsat ETM+ or Rapid Eye. In addition, ice thickness was modeled taking the basal shear stress and the glacier surface topography into account. The results indicate an area loss of 18.3±5.0% from 1964 until 2010 with continuous shrinkage in all investigated periods. The glacier’s mass balance was −0.45±0.27 m w.e. a−1 for the period 1964–1999 and −0.42±0.66 m w.e. a−1 for 1999–2012. Golubin Glacier showed a possible slight mass gain for 1964– 1971 and a decelerated mass loss for the 1999–2012 period. This is in good agreement with existing in-situ measurements exiting from 1962 until 1994 and since 2010. The overall ice volume was estimated to be 1.56±0.47 km³ of ice in the year 2000. Hence, the entire ice would be lost by 2100 if the mass loss would continue at the same rateЛедники – важный источник пресной воды в Средней Азии, поскольку максимальный ледниковый сток отмечается в летние месяцы, когда количество осадков минимально, а потребности в воде – максимальны. Многие исследования посвящены изменению площади ледников Тянь-Шаня, однако для оценки речного стока и влияния климатических изменений необходимы данные об изменении массы льда. Несмотря на важность таких исследований, до сих пор подобные работы выполнены лишь на небольшом числе ледников. Оценки баланса массы геодезическими методами могут дополнить и продлить существующие ряды прямых измерений на ледниках. В данной работе оценены изменения площади и массы ледников, расположенных в долине Ала-Арча в Киргизском Тянь-Шане, с помощью стереоснимков спутника Corona 1964 и 1971 гг., стереоснимков ASTER 2012 г., цифровой модели земной поверхности SRTM, а также других оптических данных, среди которых – LANDSAT ETM+ или RapidEye. Дополнительно было выполнено моделирование толщины льда исходя из напряжения сдвига на ложе и рельефа поверхности ледников. Результаты показали, что с 1964 по 2010 г. ледники непрерывно сокращались и потеряли 18,3±5,0% общей площади. Средний баланс массы составлял −0,45±0,27 м в.э. в год для периода с 1964 по 1999 г. и −0,42±0,66 м в.э. в год в 1999– 2012 гг. Для ледника Голубина зарегистрировано незначительное накопление массы в 1964– 1971 гг. и замедление сокращения массы в 1999–2012 гг. Эти результаты согласуются с существующими данными прямых измерений баланса массы, проводившихся с 1962 по 1994 г. и с 2010 г. По состоянию на 2000 г. общий объём льда составлял 1,56±0,47 км3. Таким образом, если масса льда будет сокращаться с такой же скоростью, то к 2100 г. ледники в районе исследования полностью растают.

    Glacial lakes exacerbate Himalayan glacier mass loss

    Get PDF
    Heterogeneous glacier mass loss has occurred across High Mountain Asia on a multi-decadal timescale. Contrasting climatic settings influence glacier behaviour at the regional scale, but high intra-regional variability in mass loss rates points to factors capable of amplifying glacier recession in addition to climatic change along the Himalaya. Here we examine the influence of surface debris cover and glacial lakes on glacier mass loss across the Himalaya since the 1970s. We find no substantial difference in the mass loss of debris-covered and clean-ice glaciers over our study period, but substantially more negative (−0.13 to −0.29 m w.e.a−1) mass balances for lake-terminating glaciers, in comparison to land-terminating glaciers, with the largest differences occurring after 2000. Despite representing a minor portion of the total glacier population (~10%), the recession of lake-terminating glaciers accounted for up to 32% of mass loss in different sub-regions. The continued expansion of established glacial lakes, and the preconditioning of land-terminating glaciers for new lake development increases the likelihood of enhanced ice mass loss from the region in coming decades; a scenario not currently considered in regional ice mass loss projections

    Brief communication : glacier mapping and change estimation using very high-resolution declassified Hexagon KH-9 panoramic stereo imagery (1971-1984)

    Get PDF
    This study was supported by the Swiss National Science Foundation (grant no. 200021E_177652/1) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA20100300).The panoramic cameras (PCs) on board Hexagon KH-9 (KH-9PC) satellite missions from 1971-1984 captured very high-resolution stereo imagery with up to 60gcm spatial resolution. This study explores the potential of this imagery for glacier mapping and change estimation. We assess KH-9PC imagery using data from the KH-9 mapping camera (KH-9MC), KH-4PC, and SPOT and Pléiades satellite imagery. The high resolution of KH-9PC leads to higher-quality DEMs, which better resolve the accumulation region of the glaciers in comparison to the KH-9MC. On stable terrain, KH-9PC DEMs achieve an elevation accuracy ofPublisher PDFPeer reviewe

    Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s

    Get PDF
    This research has been supported by the European Research Council (ICEMASS (grant no. 320816)) and the European Space Agency (grant nos. 40001161196/15/I-NB, 4000123681/18/I-NB, 4000109873/14/I-NB, 4000127593/19/I-NS, and 4000127656/19/NL/FF/gp). This work was funded by the ESA projects GlobPermafrost (40001161196/15/I-NB), Permafrost_CCI (4000123681/18/I-NB), and Glaciers_CCI (4000109873/14/I-NB, 4000127593/19/I-NS) and the ESA EarthExplorer10 Mission Advisory Group (4000127656/19/NL/FF/gp) as well as by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC grant agreement no. 320816.Spatio-temporal patterns related to the viscous creep in perennially frozen sediments of rock glaciers in cold mountains have rarely been studied outside the densely populated European Alps. This study investigates the spatial and temporal variability of rock glacier movement in the Ile Alatau and Kungöy Ala-Too mountain ranges, northern Tien Shan, a region with particularly large and fast rock glaciers. Over the study region of more than 3000 km2, an inventory of slope movements was constructed using a large number of radar interferograms and high-resolution optical imagery. The inventory includes more than 900 landforms, of which around 550 were interpreted as rock glaciers. Out of the active rock glaciers inventoried, 45 are characterized by a rate of motion exceeding 100 cm/a. From these fast rock glaciers we selected six (Gorodetzky, Morenny, Archaly, Ordzhonikidze, Karakoram, and Kugalan Tash) and studied them in more detail using offset tracking between repeat aerial images and historical and modern high-resolution optical satellite data. Two of these rock glaciers showed a steady increase in decadal surface velocities from the 1950s onwards, with speeds being roughly 2 to 4 times higher in recent years compared to the 1950s and 1960s. Three rock glaciers showed similar accelerations over the last 1 to 2 decades but also phases of increased speeds in the 1960s. This development indicates a possible significant increase in current sediment and ice fluxes through rock glaciers and implies that their material transport in the region might gain geomorphodynamic importance relative to material transport by glaciers, assuming the latter decreases together with the regional glacier shrinkage. The study demonstrates how air and satellite image archives are exploited to construct one of the longest decennial times series of rock glacier speeds currently available. Our results are in line with findings from Europe about rock glacier speeds increasing with atmospheric warming and underline local variability of such an overall response.Publisher PDFPeer reviewe

    Early 21st century snow cover state over the western river basins of the Indus River system

    Get PDF
    In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River system (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001–2012. First, we validate the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products from Terra (MOD10A1) and Aqua (MYD10A1) against the Landsat Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) data set, and then improve them for clouds by applying a validated non-spectral cloud removal technique. The improved snow product has been analysed on a seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (upper Indus basin (UIB), Astore, Hunza, Shigar and Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Seasonal average snow cover decreases during winter and autumn, and increases during spring and summer, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitudes/altitudes show higher variability than basins at lower latitudes/middle altitudes. Northeastern and northwestern aspects feature greater snow cover. The mean end-of-summer regional snow line altitude (SLA) zones range from 3000 to 5000 m a.s.l. for all basins. Our analysis provides an indication of a descending end-of-summer regional SLA zone for most of the studied basins, which is significant for the Shyok and Kabul basins, thus indicating a change in their water resources. Such results are consistent with the observed hydro-climatic data, recently collected local perceptions and glacier mass balances for the investigated period within the UIB. Moreover, our analysis shows a significant correlation between winter season snow cover and the North Atlantic Oscillation (NAO) index of the previous autumn. Similarly, the inter-annual variability of spring season snow cover and spring season precipitation explains well the inter-annual variability of the summer season discharge from most of the basins. These findings indicate some potential for the seasonal stream flow forecast in the region, suggesting snow cover as a possible predictor

    Glacial lake outburst flood hazard under current and future conditions: worst-case scenarios in a transboundary Himalayan basin

    Get PDF
    This research has been supported by the Swiss National Science Foundation (grant no. IZLCZ2_169979/1) and by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA20100300).Glacial lake outburst floods (GLOFs) are a major concern throughout High Mountain Asia, where societal impacts can extend far downstream. This is particularly true for transboundary Himalayan basins, where risks are expected to further increase as new lakes develop. Given the need for anticipatory approaches to disaster risk reduction, this study aims to demonstrate how the threat from a future lake can be feasibly assessed alongside that of worst-case scenarios from current lakes, as well as how this information is relevant for disaster risk management. We have focused on two previously identified dangerous lakes (Galongco and Jialongco), comparing the timing and magnitude of simulated worstcase outburst events from these lakes both in the Tibetan town of Nyalam and downstream at the border with Nepal. In addition, a future scenario has been assessed, whereby an avalanche-triggered GLOF was simulated for a potential large new lake forming upstream of Nyalam. Results show that large (> 20 × 106 m3 ) rock and/or ice avalanches could generate GLOF discharges at the border with Nepal that are more than 15 times larger than what has been observed previously or anticipated based on more gradual breach simulations. For all assessed lakes, warning times in Nyalam would be only 5–11 min and 30 min at the border. Recent remedial measures undertaken to lower the water level at Jialongco would have little influence on downstream impacts resulting from a very large-magnitude GLOF, particularly in Nyalam where there has been significant development of infrastructure directly within the high-intensity flood zone. Based on these findings, a comprehensive approach to disaster risk management is called for, combining early warning systems with effective land use zoning and programmes to build local response capacities. Such approaches would address the current drivers of GLOF risk in the basin while remaining robust in the face of worst-case, catastrophic outburst events that become more likely under a warming climate.Publisher PDFPeer reviewe

    Annual to seasonal glacier mass balance in High Mountain Asia derived from Pl\ue9iades stereo images: examples from the Pamir and the Tibetan Plateau

    Get PDF
    \ua9 Copyright: Glaciers are crucial sources of freshwater in particular for the arid lowlands surrounding High Mountain Asia. To better constrain glacio-hydrological models, annual, or even better, seasonal information about glacier mass changes is highly beneficial. In this study, we evaluate the suitability of very-high-resolution Pl\ue9iades digital elevation models (DEMs) to measure glacier mass balance at annual and seasonal scales in two regions of High Mountain Asia (Muztagh Ata in Eastern Pamirs and parts of western Nyainq\ueantanglha, south-central Tibetan Plateau), where recent estimates have shown contrasting glacier behaviour. The average annual mass balance in Muztagh Ata between 2019 and 2022 was -0.07ĝ€\uaf\ub1ĝ€\uaf0.20ĝ€\uafmĝ€\uafw.e.ĝ€\uafa-1, suggesting the continuation of a recent phase of slight mass loss following a prolonged period of balanced mass budgets previously observed. The mean annual mass balance in western Nyainq\ueantanglha was highly negative for the same period (-0.60ĝ€\uaf\ub1ĝ€\uaf0.15ĝ€\uafmĝ€\uafw.e.ĝ€\uafa-1), suggesting increased mass loss rates compared to the approximately previous 5 decades. The 2022 winter (+0.13ĝ€\uaf\ub1ĝ€\uaf0.24ĝ€\uafmĝ€\uafw.e.) and summer (-0.35ĝ€\uaf\ub1ĝ€\uaf0.15ĝ€\uafmĝ€\uafw.e.) mass budgets in Muztagh Ata and western Nyainq\ueantanglha (-0.03ĝ€\uaf\ub1ĝ€\uaf0.27ĝ€\uafmĝ€\uafw.e. in winter; -0.63ĝ€\uaf\ub1ĝ€\uaf0.07ĝ€\uafmĝ€\uafw.e. in summer) suggest winter- and summer-accumulation-type regimes, respectively. We support our findings by implementing the Sentinel-1-based Glacier Index to identify the firn and wet-snow areas on glaciers and characterize the accumulation type. The good match between the geodetic and Glacier Index results supports the potential of very-high-resolution Pl\ue9iades data to monitor mass balance at short timescales and improves our understanding of glacier accumulation regimes across High Mountain Asia
    corecore